Bioplastics are plastic resins developed from renewable agricultural feedstocks, such as corn sugar, hemp oil, and soy bean oil. These feedstocks are then processed into high performance polymers. In contrast, conventional plastics are derived from petroleum.

Biodegradable refers to the ability of a substance to break down into small enough parts so that microorganisms can consume it. Given enough time, all products eventually biodegrade, but plastics for example take much longer.
Compostable refers to the ability of microbes to break down materials. Compost requires the right level of heat, water and oxygen to support microbes and support the breakdown. Products that compost leaves no visible, distinguishable or toxic residue and generally help improve the soil.

Hydrocarbon plastics are made from numerous petroleum based chemicals and additives. Many of these have been proven to be carcinogenic, and have other harmful effects on the balance of animal life. The persistence of the chemical makeup of these compounds cause the products made from them to become a non-biodegradable “blanket” which is now so pervasive in our environment that it is suffocating, strangling, and starving the animal life on this planet.

In addition, recycling efforts in voluntary states is ineffective, causing most plastics used there to go directly to landfill.

We must realize that there is no safe place for this toxic bio-accumulation to be sequestered, and we are still increasing production of hydrocarbon plastics at a rate of about 80 billion pounds per year through the manufacture of virgin plastics for bottles, plastic bags, packaging, and every other application that our current lifestyle demands. We need smarter science, and more modest lifestyles.

Some high growth applications of bioplastics include:

Renewable resource based and compostable film packaging, shopping and refuse waste bags Agricultural products, such as biodegradable mulch film, plant pots and stakes Catering products, such as trays, cups, plates, cutlery and bags Rigid packaging, such as trays, containers, bottles and closures Pouches and netting

Bioplastics resins can be processed on standard plastics processing equipment designed for thermoplastic resins. However, due to the different nature of the materials, the processing conditions need to be adjusted. For example, the process temperatures required to extrude Bioplastics resins are lower than the temperatures required to convert conventional plastics. This provides a benefit of lower energy consumption for the converter and adds to the lower carbon foot print polyethylene.

Bioplastic products meeting ASTM D6400 and EN 13432 standards can biodegrade in a variety of environments, including soil, home compost, industrial compost. We recommend that you compost these products; you can contact your local waste and/or recycling vendor for more information about home or industrial composting programs in your area. In any case, it is also important that you follow your standard laboratory procedures for waste disposal.

Bioplastics are regarded as an environmentally responsible alternative to petroleum-based plastics. They rely less on fossil fuels, a non-renewable resource. They also are biodegradable when disposed of properly, reducing waste. Finally, bioplastic products result in a net reduction of greenhouse gas emissions because the plants used to produce the bioplastic material absorb the same amount of carbon they started with, thus displacing that carbon from being emitted into the atmosphere.

Bioplastics resins are sold in Asia, Australia, Europe, and North America. Our customers are retailers, municipal councils, brand owners, and other organisations.

525, Avior, Near Deep Mandir
LBS Marg,Mulund-west,Mumbai,India-400080

Phone: (+91)-22-25909001